3,614 research outputs found

    The preparation, characterization, and pharmacokinetic studies of chitosan nanoparticles loaded with paclitaxel/dimethyl-β-cyclodextrin inclusion complexes.

    Get PDF
    A novel biocompatible and biodegradable drug-delivery nanoparticle (NP) has been developed to minimize the severe side effects of the poorly water-soluble anticancer drug paclitaxel (PTX) for clinical use. PTX was loaded into the hydrophobic cavity of a hydrophilic cyclodextrin derivative, heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD), using an aqueous solution-stirring method followed by lyophilization. The resulting PTX/DM-β-CD inclusion complex dramatically enhanced the solubility of PTX in water and was directly incorporated into chitosan (CS) to form NPs (with a size of 323.9–407.8 nm in diameter) using an ionic gelation method. The formed NPs had a zeta potential of +15.9–23.3 mV and showed high colloidal stability. With the same weight ratio of PTX to CS of 0.7, the loading efficiency of the PTX/DM-β-CD inclusion complex-loaded CS NPs was 30.3-fold higher than that of the PTX-loaded CS NPs. Moreover, it is notable that PTX was released from the DM-β-CD/CS NPs in a sustained-release manner. The pharmacokinetic studies revealed that, compared with reference formulation (Taxol(®)), the PTX/DM-β-CD inclusion complex-loaded CS NPs exhibited a significant increase in AUC(0→24h) (the area under the plasma drug concentration–time curve over the period of 24 hours) and mean residence time by 2.7-fold and 1.4-fold, respectively. Therefore, the novel drug/DM-β-CD inclusion complex-loaded CS NPs have promising applications for the significantly improved delivery and controlled release of the poorly water-soluble drug PTX or its derivatives, thus possibly leading to enhanced therapeutic efficacy and less severe side effects

    Multiclass segmentation based on generalized fuzzy Gibbs random fields

    Get PDF
    The model of Gibbs random fields is widely applied to Bayesian segmentation due to its best property of describing the spatial constraint information. However, the general segmentation methods, whose model is defined only on hard levels but not on fuzzy set, may come across a lot of difficulties, e.g., getting the unexpected results or even nothing, especially when the blurred or degraded images are considered. In this paper, two multiclass approaches, based on the model of piecewise fuzzy Gibbs random fields (PFGRF) and that of generalized fuzzy Gibbs random fields (GFGRF) respectively, are presented to address these difficulties. In our experiments, both magnetic resonance image and simulated image are implemented with the two approaches mentioned above and the classical 'hard' one. These three different results show that the approach of GFGRF is an efficient and unsupervised technique, which can automatically and optimally segment the images to be finer.published_or_final_versio

    Prevalence of Mycoplasma pneumoniae: A cause for community‑acquired infection among pediatric populaztion

    Get PDF
    Background: Atypical pneumonia caused by Mycoplasma pneumoniae is a leading cause of mortality among the pediatric age group.Objectives: Our study was designed to know the prevalence of M. pneumoniae in children with community‑acquired pneumonia and the involvement in the cytoadherence to the respiratory epithelium by M. pneumoniae using electron microscopy and immuno‑gold labeling technique.Materials and Methods: A total of 152 children of 1 month to 12 years of age of both sexes attending Hebei Provincial People’s Hospital, Shijiazhuang, Hebei with diagnosed pneumonia were included in the study.Results: Out of 152 children 84 (55.3%) were males, and 68 (44.7%) were females. The mean age of the patients in the control group (50 patients) was 18.5 ± 3 months with 31 (62%) males and 19 (38%) females. IgM antibodies against M. pneumoniae were positive in 84 (55.3%) males and 68 (44.7%) females. Out of 50 patients 9 (18%) were found to positive for IgM M. pneumoniae antibodies of which four (44.4%) males and 5 (55.5%) females were positive. Our study observed that the gold particles were clustered on the filamentous extension of the tip of the cells. Out of 152 serum samples subjected to particle agglutination assay 138 (90.7%) were positive 1:320 titer, 9 were >1:80 and 3 showed titer was >1:40.Conclusion: We suggest that clinicians should consider empirical therapy of broad spectrum antibiotics therapy to cover these atypical pathogens to reduce the severity before obtaining the serological results. From our study, we also suggest electron microscopic and biochemical studies for better diagnosis of these pathogens.Key words: Atypical, community‑acquired pneumonia, electron microscope, gold labelin

    Current–Voltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope

    Get PDF
    In this paper, we focus on current–voltage (I–V) characteristics in several kinds of quasi-one-dimensional (quasi-1D) nanofibers to investigate their electronic transport properties covering a wide temperature range from 300 down to 2 K. Since the complex structures composed of ordered conductive regions in series with disordered barriers in conducting polymer nanotubes/wires and CdS nanowires, all measured nonlinearI–Vcharacteristics show temperature and field-dependent features and are well fitted to the extended fluctuation-induced tunneling and thermal excitation model (Kaiser expression). However, we find that there are surprisingly similar deviations emerged between theI–Vdata and fitting curves at the low bias voltages and low temperatures, which can be possibly ascribed to the electron–electron interaction in such quasi-1D systems with inhomogeneous nanostructures

    Parametric analysis of economy corruption

    Get PDF
    2000-2001 > Academic research: refereed > Publication in policy or professional journalVersion of RecordPublishe

    Penetration Enhancement Effect of Turpentine Oil on Transdermal Film of Ketorolac

    Get PDF
    Purpose: To prepare transdermal films of ketorolac tromethamine (KT) and study the effect of turpentine oil as a penetration enhancer for the drug.Methods: Transdermal films of KT were prepared with Carbopol-934 and ethyl cellulose, with turpentine oil as the penetration enhancer, using solvent evaporation method. The films were characterized for physicochemical properties, ex vivo permeation, as well as in vivo anti-inflammatory and analgesic activities in Wistar rats. Results: The transdermal films were uniform in weight and thickness, flat, with high drug content (93.9 to 98.5 %) and of high folding endurance (134.0 to 180.0). Drug permeation through excised rat abdominal skin was prolonged, with the total drug release ranging from 58.88 to 88.98 % in 24 h. The films containing penetration enhancer showed higher drug permeation than the one without the enhancer; furthermore, drug permeation increased with increase in the concentration of the enhancer. The films were non-irritant to the skin. The transdermal films prepared with permeation enhancers showed greater anti-inflammatory activity (87.55 ± 2.50 and 83.24 ± 2.29 % inhibition of rat paw edema at the end of 12 h for formulations F2 and F3, respectively, compared to that of the formulation without enhancer with 69.99 %) as well as greater analgesic activity (quicker onset of analgesia in 1.5 h with longer duration of 10 to 12 h).Conclusion: Transdermal films of ketorolac have a potential for use in the treatment of pain andinflammation. Incorporation of turpentine oil in the films enhances not only drug flux but also analgesic and anti-inflammatory activities in rats

    Current–Voltage Characteristics in Individual Polypyrrole Nanotube, Poly(3,4-ethylenedioxythiophene) Nanowire, Polyaniline Nanotube, and CdS Nanorope

    Get PDF
    In this paper, we focus on current–voltage (I–V) characteristics in several kinds of quasi-one-dimensional (quasi-1D) nanofibers to investigate their electronic transport properties covering a wide temperature range from 300 down to 2 K. Since the complex structures composed of ordered conductive regions in series with disordered barriers in conducting polymer nanotubes/wires and CdS nanowires, all measured nonlinearI–Vcharacteristics show temperature and field-dependent features and are well fitted to the extended fluctuation-induced tunneling and thermal excitation model (Kaiser expression). However, we find that there are surprisingly similar deviations emerged between theI–Vdata and fitting curves at the low bias voltages and low temperatures, which can be possibly ascribed to the electron–electron interaction in such quasi-1D systems with inhomogeneous nanostructures

    Study on GMZ bentonite-sand mixture by undrained triaxial tests

    Full text link
    © 2016 The Authors. It is particularly necessary to study the deformation, strength and the changes of pore water pressure of bentonite-based buffer/backfill materials under the undrained condition. A series of isotropic compression tests and triaxial shear tests under undrained conditions were conducted on the compacted saturated/unsaturated GMZ bentonite-sand mixtures with dry mass ratio of bentonite/sand of 30:70. During the tests, the images of the sample were collected by photographic equipment and subsequently were cropped, binarized and centroids marked by image processing technique. Based on identification of the variation of the position of marked centroids, the deformation of the sample can be determined automatically in real-time. Finally, the hydro-mechanical behaviour of saturated and unsaturated bentonite-sand mixtures under the undrained condition can be obtained. From results of triaxial shear tests on unsaturated samples under constant water content, inflated volumetric deformation transforms to contractive volumetric deformation due to the increase of the confining pressure and lateral expansion deformation are observed due to the increase in the shearing stress. Moreover, the net mean stress affects the initial stiffness, undrained shear strength and deformation of the sample during the undrained shear tests

    Prediction of the functional class of metal-binding proteins from sequence derived physicochemical properties by support vector machine approach

    Get PDF
    Metal-binding proteins play important roles in structural stability, signaling, regulation, transport, immune response, metabolism control, and metal homeostasis. Because of their functional and sequence diversity, it is desirable to explore additional methods for predicting metal-binding proteins irrespective of sequence similarity. This work explores support vector machines (SVM) as such a method. SVM prediction systems were developed by using 53,333 metal-binding and 147,347 non-metal-binding proteins, and evaluated by an independent set of 31,448 metal-binding and 79,051 non-metal-binding proteins. The computed prediction accuracy is 86.3%, 81.6%, 83.5%, 94.0%, 81.2%, 85.4%, 77.6%, 90.4%, 90.9%, 74.9% and 78.1% for calcium-binding, cobalt-binding, copper-binding, iron-binding, magnesium-binding, manganese-binding, nickel-binding, potassium-binding, sodium-binding, zinc-binding, and all metal-binding proteins respectively. The accuracy for the non-member proteins of each class is 88.2%, 99.9%, 98.1%, 91.4%, 87.9%, 94.5%, 99.2%, 99.9%, 99.9%, 98.0%, and 88.0% respectively. Comparable accuracies were obtained by using a different SVM kernel function. Our method predicts 67% of the 87 metal-binding proteins non-homologous to any protein in the Swissprot database and 85.3% of the 333 proteins of known metal-binding domains as metal-binding. These suggest the usefulness of SVM for facilitating the prediction of metal-binding proteins. Our software can be accessed at the SVMProt server
    corecore